Complex Valued Recurrent Neural Network: From Architecture to Training
نویسندگان
چکیده
Recurrent Neural Networks were invented a long time ago, and dozens of different architectures have been published. In this paper we generalize recurrent architectures to a state space model, and we also generalize the numbers the network can process to the complex domain. We show how to train the recurrent network in the complex valued case, and we present the theorems and procedures to make the training stable. We also show that the complex valued recurrent neural network is a generalization of the real valued counterpart and that it has specific advantages over the latter. We conclude the paper with a discussion of possible applications and scenarios for using these networks.
منابع مشابه
Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملPulse Waveform Synthesis Using Recurrent Complex Valued Neural Networks
Abstract Experiment of time sequential pulse train synthesis using a layered and partially recurrent complex valued neural network is reported A half of the three layer complex valued neural network is used to generate sinusoidal oscillation and the other half to synthesize adaptively the intended pulse shapes and sequences Stable time sequential pulse signals are obtained after completion of l...
متن کاملHistorical Consistent Complex Valued Recurrent Neural Network
Recurrent Neural Networks are in the scope of the machine learning community for many years. In the current paper we discuss the Historical Consistent Recurrent Neural Network and its extension to the complex valued case. We give some insights into complex valued back propagation and its application to the complex valued recurrent neural network training. Finally we present the results for the ...
متن کاملMulti-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملComplex Valued Artificial Recurrent Neural Network as a Novel Approach to Model the Perceptual Binding Problem
In this paper we suggest a new model for solving the binding problem by introducing complex-valued recurrent networks. These networks can represent sinusoidal oscillations and their phase, i.e., they can model the binding problem of neuronal assemblies by adjusting the relative phase of the oscillations of different feature detectors. As feature examples, we use color and shape – but the networ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012